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Abstract

Near-infrared (NIR) reflectance spectroscopy was evaluated as a rapid and environmentally benign technique for the simultaneous
determination of macronutrients and energy in commercially available, packaged meals. Reflectance spectra (400–2498 nm) of homo-
genized meals were obtained with a dispersive NIR spectrometer. Protein and moisture were measured by AOAC reference methods,
total fat by a semi-automated acid hydrolysis, solvent extraction, gravimetric method and total carbohydrate calculated. Energy was cal-
culated using Atwater factors. Using multivariate analysis software, PLS models (n = 113–115 products) were developed to relate NIR
spectra of homogenized meals to the corresponding reference values. The models predicted components and energy in validation samples
(n = 37–38 products), overall, with r2 of above 0.96. Ratios of deviation to performance were between 3.6 and 6.6, and indicated ade-
quacy of the models for screening, quality control, or process control. Performance of the models varied substantially when used to pre-
dict sub-groups of meals within the validation set.
Published by Elsevier Ltd.
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1. Introduction

Precooked and packaged meals sometimes called mixed
meals, home meal replacements, ready-to-eat meals or
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Abbreviations: ASTM, American Standards for Testing and Materials;
HO, sample preparation homogenized only; HD, sample preparation
homogenized and dried; HDF, sample preparation homogenized dried
and defatted; n, number of samples; NIR, near infrared; PLS, partial least
squares; R2, multiple coefficient of determination; r2, coefficient of deter-
mination; RPD, standard error of the reference data for the validation
samples divided by the SEP; SD, standard deviation; SECV, standard
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ready-to-heat-and-eat meals are a significant portion of
the retail grocery market in Europe and the USA and are
gaining popularity worldwide. They are commercially
available, packaged foods, typically already cooked, that
contain two or more food groups, usually a protein (animal
or plant) and staple (carbohydrate) or vegetable in single or
multiple portion containers. As packaged products they are
included under the US Nutrition Labeling and Education
Act (Code of Federal Regulations, 2005). Component anal-
ysis of such foods is very time consuming partly because of
the analysis time required but also because of the high
moisture content and the need to dry samples prior to anal-
ysis. Near-infrared spectroscopic methods could provide an
ideal method for rapid screening of such meals.

Near-infrared (NIR) spectroscopy is an analytical
technique enabling several components to be determined
simultaneously and rapidly without requiring extensive
sample preparation (Norris, 1989). Since its first use for
the analysis of protein and oil content in corn and
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soybeans (Hymowitz, Dudley, Collins, & Brown, 1974),
NIR spectroscopy has proved to be an excellent method
for the nutrient analysis of foods, and has significant
potential for the analysis and monitoring of foods for
nutrition labeling (Kays & Barton, 2006). The technique
is rapid, environmentally benign and has found wide-
spread use in analyses for food components such as fat,
protein, water, carbohydrate, and dietary fiber. Most
prior studies on the prediction of food components have
focused on developing specific NIR models for types of
food, e.g., meat products (Ben-Gera & Norris, 1968),
snack foods (Baker, 1985), dehydrated vegetables (Ito,
Ippoushi, Azuma, & Higashio, 1999), oat bran products
(Williams, Cordeiro, & Harnden, 1991), cereal products
(Kays & Barton, 2006), dairy products (Giangiacomo &
Cattaneo, 2007) and fish products (Adamopoulos &
Goula, 2004; Uddin et al., 2006), and for animal diets
(White & Rouvinen-Watt, 2004).

Commercially available homogenized dinners or meals
are far more complex and varied, from one sample to
another, than single food types or animal diets studied to
date. The meals can include meat, seafood, fish, vegetables,
fruits, dried fruits, nuts, grains, dairy, cereal products, food
additives, dough conditioners, thickening agents, season-
ings, spices and other ingredients in any number of combi-
nations and proportions, with a wide range of cooking
methods and ethnic cuisines. Their complexity makes them
unique. Direct analysis of homogenized meals without the
need for prior drying or drying and defatting would be
advantageous; however, near infrared work on predicting
the composition of human diets or meals is extremely lim-
ited. Almendingen, Meltzer, Pedersen, Nilsen, and Ellekj-
aer (2000) investigated the potential of NIR spectroscopy
for prediction of fat and protein in homogenized daily diets
of students; but, the diets were freeze-dried before obtain-
ing NIR spectra. The only study that uses the spectra of
human meals or diets that are homogenized only and not
dried is our own work on prediction of total dietary fiber
in commercially available packaged human meals (mixed
meals) (Kim, Singh, & Kays, 2006). Results showed these
samples also had to be dried to obtain useful correlations
for dietary fiber. In the current paper we extend that study
by developing useful models to predict protein, total fat,
moisture, total carbohydrate and energy in dinners that
are homogenized only. This addresses a deficit in the liter-
ature on the potential of NIR to predict composition of
homogenized meals or dinners without prior drying.

2. Materials and methods

2.1. Samples and sample preparation

Samples were as described previously (Kim et al., 2006).
Briefly, one hundred and fifty three packaged meals were
selected from a cross section of retail stores to represent
the types of meals commercially available. Ingredients
included meat, fish, shell fish, eggs, dairy products, soybean
products, vegetables, tomato products, sauces, cereal prod-
ucts, wine, oils, gums, starches, food coloring, and season-
ings in varied combinations and with a wide range of
cooking methods and ethnic cuisines. The meals contained
two or more food groups, e.g., animal protein based (meat/
fish) with vegetable (31% of the total samples purchased);
plant protein based (legume) with vegetable or meat (29%
of the samples purchased); or carbohydrate based (cereal)
with vegetable or meat (40% of the samples purchased).
The samples were homogenized, immediately after being
removed from the commercial packaging, using a Robot
Coupe homogenizer (Model RSI 10, Robot Coupe USA
Inc., Joliet, IL) until a smooth and consistent texture was
obtained. Frozen samples were homogenized while frozen.
The homogenate of each sample was divided into sub-sam-
ples and placed in polyethylene freezer bags which were
closed and allowed to equilibrate to room temperature.
Immediately after equilibrating, one sub-sample (homoge-
nized only, HO) was scanned to obtain NIR reflectance
spectra; the other sub-sample was dried in a forced air oven
at 105 �C for 16 h. The homogenized and dried (HD) sam-
ples were ground with an analytical mill (Model 4301-00,
Cole-Parmer Instrument Co., Vernon Hills, IL) and
divided into sub-samples; one was used to determine pro-
tein and total fat contents and a second was defatted using
petroleum ether in a Soxhlet apparatus for 4 h to obtain the
homogenized, dried, and defatted (HDF) samples. The
HDF samples were used for ash determination.

2.2. Chemical analysis

All analyses were performed in duplicate. Moisture was
determined by the AOAC air oven method 945.14 (AOAC,
1990) immediately after homogenizing the fresh samples.
Total fat in HD samples was determined by the Foss Sox-
tecTM 2047 SoxcapTM and the Foss 2050 Soxtec Avanti Auto-
matic System (FOSS North America, Inc., Eden Prairie,
MN) for total fat, which involves acid hydrolysis of the
sample followed by petroleum ether extraction and gravi-
metric measurement of the extracted lipid. Total fat differs
from crude fat in that bound lipids are released by the
hydrolysis step and included in the measurement. In this
method, any non-lipid, petroleum ether-extractable sub-
stances are rinsed from the matrix after the acid hydrolysis
step. Crude protein in HD samples was determined by
AOAC method 990.03 (AOAC, 1997) using a LECO, FP-
2000 Protein/Nitrogen Analyzer and LECO reagents
(LECO Corporation, St. Joseph, MI). The nitrogen to pro-
tein conversion factor used was 6.25. Total fat and protein
in HO samples were calculated based on moisture loss from
HD samples. Ash in HDF samples was determined by
AOAC Method 923.03 (AOAC, 2000) with a muffle fur-
nace set at 550 �C. Ash content of HO samples was calcu-
lated based on moisture and fat loss from HDF samples.
The standard error of the laboratory (SEL) was calculated
for the reference methods for moisture, protein and fat
(ASTM, 1995) based on HO samples. Although protein
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and fat were measured in HD samples, values for each sam-
ple replicate were calculated based on water loss from HO
samples before determining the SEL.

2.3. Calculation of total carbohydrate and energy

The US Code of Federal Regulations (2005) states that,
for nutrition labeling purposes, ‘‘total carbohydrate con-
tent shall be calculated by subtraction of the sum of the
crude protein, total fat, moisture and ash from the total
weight of the food”. Total carbohydrate in HO samples
was, thus, calculated as the difference between 100 and
the sum of the percentages of moisture, crude protein, total
fat, and ash (Ferris, Flores, Shanklin, & Whitworth, 1995).
The US Code of Federal Regulations (2005) states that, for
nutrition labeling purposes, energy content of foods may
be calculated by one of several methods that include ‘‘using
the general factors of 4, 4, and 9 cal/g for protein, total car-
bohydrate, and total fat, respectively”. Thus, energy in the
current study was expressed as kilocalories per gram (kcal/
g) in HO samples and was calculated from the percentage
of crude protein, total carbohydrates and total fat. The
conversion factors used were 4.0 kcal/g for protein and car-
bohydrates and 9.0 kcal/g for total fat (Ferris et al., 1995;
Merrill & Watt, 1955). Pearson correlation analysis was
performed on crude protein, total fat, total carbohydrate
and energy using SAS version 9.1 (SAS Institute, Inc.,
Cary, NC).

2.4. Spectroscopic analysis

Samples were scanned in cylindrical cam-lock cells
(internal diameter = 38 mm, depth = 9 mm) using the
NIRSytems 6500 monochromator (Foss North America,
Inc., Eden Prairie, MN), in reflectance mode, and ISI soft-
ware (NIRS3 version 4.01, Foss North America, Inc., Eden
Prairie, MN). Diffusely reflected radiation was detected
from 400 to 2498 nm at 10 nm resolution with a data inter-
val of 2 nm. Samples were scanned in triplicate portions to
include intra-sample variation. The software was set so that
each triplicate portion was scanned 16 times and the 16
scans were averaged. The data were transformed to log1/
R and scans from the triplicate portions of each sample
were then averaged to give a single spectrum from which
calibrations were developed.

2.5. Calibration development

As samples were scanned over a period of months, all
spectral data from different dates were standardized to
spectra of one specific month using the WinISI monochro-
mator instrument standardization software (Foss North
America Inc., Eden Prairie, MN), then converted and
imported into the Unscrambler software 9.0 (CAMO,
Trondheim, Norway). Samples were divided into calibra-
tion and validation sets after sorting by ascending order
for each parameter in HO samples. The first three samples
were assigned to the calibration set, and the fourth to the
validation set and so on. Partial least squares (PLS) regres-
sion (Martens & Martens, 1986; Martens & Naes, 1989)
was used to develop calibration models (n = 113–115) for
each parameter. The wavelength range and preprocessing
methods for each model were chosen for optimum perfor-
mance with minimum error following full cross validation.
The optimum number of PLS factors for calibration was
that which gave a minimum cross validation error. For
protein and moisture, the HO sample spectra were prepro-
cessed with the Savitzky-Golay first derivative treatment
(Savitzky & Golay, 1964) followed by a multiplicative scat-
ter correction (MSC) (Martens, Jensen, & Geladi, 1983).
For total carbohydrate, the spectra of the HO samples were
preprocessed with the Savitzky-Golay first derivative. For
the total fat and energy models, the spectra of HO samples
were preprocessed with MSC followed by the Savitzky-
Golay second derivative treatment.

2.6. Calibration performance

Calibration performance was first calculated as the mul-
tiple coefficient of determination (R2) and standard error of
cross-validation (SECV) (Martens & Naes, 1989). The
models were then tested by predicting validation samples
(n = 37–38) and sub-groups of validation samples. Perfor-
mance was reported as the coefficient of determination
(r2), the standard error of performance (SEP), the bias,
and the ratios of deviation to performance (RPD)
(Hruschka, 1987; Martens & Naes, 1989; Williams, 2001).
The RPD is the standard deviation of reference data for
the validation samples divided by the SEP and provides a
standardization of the SEP (Williams, 2001). In general,
RPD values of 3.1–4.9 indicate the model is suitable for
screening, values of 5.0–6.4 are considered to be adequate
for quality control, values of 6.5–8.0 are adequate for pro-
cess control, and values of >8.0 are considered adequate
for any application (Williams, 2001).

3. Results

3.1. Components measured and calculated by the reference

method

The range, mean and standard deviation of reference val-
ues of components for samples in the calibration and
validation sets are presented in Table 1. Samples encom-
passed a broad overall range in moisture (45–90%), total
fat (0–17%), crude protein (2–24%), total carbohydrate
(3–36%) and energy (0.4–3.0 kcal/g). The range, mean,
and standard deviation of components were similar for
the calibration and validation sets. The SEL for the mea-
sured components, moisture, crude protein, and total fat
in HO samples were 0.17, 0.21, and 0.16, respectively. Posi-
tive correlations (Pearson’s correlation coefficient) were
observed between energy and other components with total
fat having the highest correlation with energy (0.80)



Table 1
Range, mean, and standard deviation of AOAC reference values for protein, moisture, total fat, total carbohydrate, and energy in homogenized meals in
the calibration and validation data sets

Calibration Validation

na Range Mean SD n Range Mean SD

Protein (%) 115 1.90–23.91 8.31 5.02 37 2.70–23.07 8.50 5.16
Moisture (%) 115 44.81–90.41 69.42 10.02 38 48.95–87.14 69.82 9.87
Total fat (%) 113 0.15–17.12 4.27 3.25 38 0.31–14.62 4.34 3.21
Total carbohydrate (%) 114 3.01–36.16 16.12 7.18 37 4.20–35.15 16.56 7.25
Energy (kcal/g) 115 0.40–3.00 1.38 0.53 38 0.55– 2.56 1.39 0.52

a Number of samples (n); standard deviation (SD).
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followed by carbohydrate (0.65) and crude protein (0.48).
Ash content in the entire data set ranged from 0.4% to 3.3%.

3.2. PLS models for components and energy in homogenized

meals

The NIR spectra of homogenized meals showed distinct
peaks that reflect composition, as described previously
(Kim et al., 2006). The cross validation and validation sta-
tistics for the optimum PLS models to predict protein,
moisture, total fat, total carbohydrate and energy are given
in Table 2. The wavelength range of 1100–2498 nm was
optimum for all models except total fat. Modeling of total
fat using the 1100–1898 nm wavelength range resulted in
similar accuracy to that using the 1100–2498 nm range
(SECV = 0.93%; R2 = 0.96), however, fewer factors were
required (i.e., three rather than four) and the 1100–
1898 nm range was used for the model. In contrast, models
for protein, moisture and total carbohydrate when calcu-
lated without the 1900–2498 nm range, were lower in accu-
racy or used more factors than when the entire 1100–
2498 nm range was utilized. Models for crude protein, total
fat, and total carbohydrate calculated using wavelength
ranges that exclude the main water peaks (1400–1460 nm
and 1870–2026 nm) did not have improved performance
compared with models calculated with the full wavelength
range.

The number of PLS factors used for prediction of pro-
tein, moisture, total fat, total carbohydrate and energy
were 5, 3, 3, 7 and 4, respectively. Performance statistics
for the models (n = 113–115) to predict protein, moisture,
total fat, total carbohydrate and energy are given in Figs.
Table 2
Cross validation and validation statistics for NIR prediction of protein, moist

Cross validation

Wavelength (nm) na NIR mean NIR SD S

Protein (%) 1100–2498 115 8.27 4.99 1
Moisture (%) 1100–2498 115 69.60 9.67 1
Total fat (%) 1100–1898 113 4.19 3.16 0
Total carbohydrate (%) 1100–2498 114 16.16 6.98 1
Energy (kcal/g) 1100–2498 115 1.381 0.511 0

a Number of samples (n); standard deviation (SD); standard error of cross-va
of performance (SEP); coefficient of determination (r2); ratio of the standard
1 and 2 and Table 2. One outlier was removed from the cal-
ibration sample set for the total carbohydrate model and
two for the total fat model. One outlier was removed from
the validation sample set for the protein and total carbohy-
drate models.

The RPD values for the overall models indicated the
protein, moisture and energy models are suitable for pro-
cess control and quality control, with RPDs of 6.6, 6.1
and 6.3, respectively. The total fat and total carbohydrate
models are adequate for screening purposes with RPDs
of 4.3 and 3.6, respectively.

3.3. Regression coefficients

Examination of the inflection points for the first deriva-
tive models revealed the moisture model had high variation
around 1400 nm indicating absorption by the first overtone
of O–H stretch in water (Murray & Williams, 1987;
Osborne, Fearn, & Hindle, 1993). The first derivative crude
protein model had main bands around 1692 and 2070–2306
nm indicating involvement due to absorption by amide N–
H groups in protein. Regression coefficients for the first
derivative total carbohydrate model had the highest varia-
tion around 1702 and 2000–2300 nm indicating possible
involvement of O–H and C–H groups from starch and cel-
lulose (data not shown).

The second derivative total fat model (Fig. 3a) had var-
iation due to absorption by C–H stretch at 1728 and
1762 nm and additional peaks at 1212 and 1390 nm. When
the total fat model was calculated with the full 1100–
2498 nm range, the regression coefficients had poor correla-
tions above 1900 nm.
ure, total fat, total carbohydrate, and energy in homogenized meals

Validation

ECV R2 n NIR mean NIR SD SEP r2 Bias RPD

.07 0.98 37 8.33 5.01 0.78 0.99 0.07 6.6

.93 0.98 38 69.69 9.37 1.63 0.99 �0.13 6.1

.67 0.98 38 4.39 2.95 0.75 0.97 0.05 4.3

.80 0.97 37 16.55 7.15 2.00 0.96 �0.01 3.6

.103 0.98 38 1.390 0.527 0.081 0.99 �0.00 6.3

lidation (SECV); multiple coefficient of determination (R2); standard error
deviation of the AOAC values to the SEP (RPD).



Moisture

40 50 60 70 80 90 100
40

50

60

70

80

90

100

Total Fat

Measured value (%)

0 3 6 9 12 15 18

P
re

di
ct

ed
 v

al
ue

 (
%

)

0

3

6

9

12

15

18

Protein

0 5 10 15 20 25

P
re

di
ct

ed
 v

al
ue

 (
%

)

0

5

10

15

20

25

Total Carbohydrate

Measured value (%)

0 8 16 24 32 40
0

8

16

24

32

40

Measured value (kcal/g)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

P
re

di
ct

ed
 v

al
ue

 (
kc

al
/g

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Energy

Fig. 1. Cross validation plots of reference method determined or calculated values versus NIR-predicted values for moisture, protein, total fat, total
carbohydrate and energy in homogenized meals.
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First and second derivative models for energy gave very
similar performance. The second derivative regression coef-
ficients (Fig. 3b) indicated that C–H groups in lipids at
1210, 1398, and 1726 nm were important in model develop-
ment in addition to a band at 2282 nm indicating involve-
ment of O–H and C–C stretch in starch (Murray &
Williams, 1987; Osborne et al., 1993).

3.4. Performance of models when used to predict the sub-

groups of meals in the validation sample set

Based on RPD values, the components predicted with
the highest accuracy were protein and moisture in the veg-
etable protein-based meals (10.1 and 9.9, respectively) fol-
lowed by protein and moisture in the carbohydrate-based
meals (5.7 and 8.3, respectively) (Table 3). Ratios of devia-
tion to performance for the energy models were 13.4, 6.2
and 5.1 for animal protein-based, vegetable-based and car-
bohydrate-based meals, respectively.

4. Discussion

Conventional methods of food analysis are time con-
suming, especially when multiple components are analyzed.
It was found that the major components and energy of
homogenized meals could be determined by NIR reflec-
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Fig. 2. Validation plots of reference method determined or calculated values versus NIR-predicted values for moisture, protein, total fat, total
carbohydrate and energy in homogenized meals.
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tance spectroscopy within the accuracy required for screen-
ing, quality control, or higher, depending on the parameter
and the type of meal. The parameters can be determined
concurrently by NIR spectroscopy in a wide variety of
commercial packaged ready-to-eat meals after samples
are homogenized only. This reduces analysis time substan-
tially as conventional chemical analysis requires drying the
samples after homogenization, thus, taking at least a day to
perform. In contrast, the NIR method merely requires 10–
15 min to load the homogenized meals into the sampling
cells in triplicate and scan them.

The accuracy of NIR prediction of the components var-
ied substantially based on the parameter and the type of
meal. Over all, the prediction accuracy for validation sam-
ples was greatest for the crude protein model followed by
moisture and energy, with accuracy estimated to be high
enough for process control for protein and quality control
for moisture and energy (Williams, 2001). Total fat and
carbohydrate were predicted with the least accuracy over
all but models were still sufficiently accurate for screening
samples. When the samples were broken down into types
of meals, substantial variation was observed in the predic-
tion of protein and moisture. In contrast, energy was pre-
dicted well in all sub-groups and most accurately in the
animal protein-based meals, possibly because of the higher
fat content compared to the other sub-groups. From the
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Table 3
Statistics for NIR prediction of protein, moisture, total fat, total carbohydra
sample set

Components Sub-groupa Valida

nb

Protein (%) Animal protein based 11
Vegetable protein based 11
Carbohydrate based 15

Moisture (%) Animal protein based 16
Vegetable protein based 10
Carbohydrate based 12

Total fat (%) Animal protein based 14
Vegetable protein based 9
Carbohydrate based 15

Total carbohydrate (%) Animal protein based 12
Vegetable protein based 13
Carbohydrate based 12

Energy (kcal/g) Animal protein based 8
Vegetable protein based 12
Carbohydrate based 18

a Animal protein based group (meat or fish based with vegetable); vegetable
based with meat or vegetable).

b Number of samples (n); standard error of performance (SEP); coefficient of
the SEP (RPD).
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regression coefficients for the energy prediction model, fat
appeared to be an important contributor to the energy
model and has been shown to be a major factor in energy
prediction models in other types of foods (Kays & Barton,
2002). In addition, Pearson correlation coefficients indicate
that fat was the component most highly correlated with
energy.

In a prior study from this laboratory (Kim et al., 2006),
it was found that the prediction of total dietary fiber (TDF)
in homogenized meals was limited partly because of the
broad water peak in the 1850–2300 nm range and also
because of the low range in dietary fiber content in the
meals. Drying or drying and defatting of samples were
required for adequate model performance in screening
samples for TDF content. In contrast, in the current study
it was shown that other major constituents and energy
could be predicted adequately for screening without drying
and defatting, suggesting that more information was avail-
able in the spectra for prediction of protein, total fat and
carbohydrate and that important bands for these constitu-
ents occurred in areas of the spectra outside the broad
water peak. In addition, in general, the ranges in quantities
of the components in the current study were wider than
those for total dietary fiber.

Further testing of the calibrations could include vali-
dation samples that are completely independent, i.e.,
tested at a different point in time than the calibration
samples. Furthermore, larger numbers of samples in each
sub-group would provide more conclusive information on
the ability to predict parameters in specific types of
meals.
te, and energy in the sub-groups of homogenized meals in the validation

tion

Reference range SEP r2 RPD

3.48–10.57 0.77 0.96 2.5
2.70–23.07 0.77 1.00 10.1
3.72–18.87 0.73 0.98 5.7

59.92–87.14 1.95 0.97 3.6
53.81–79.00 1.00 1.00 9.9
48.95–75.81 1.19 0.99 8.3

0.87–14.62 1.14 0.96 3.6
0.31–8.85 0.69 0.96 3.6
1.16–11.04 1.17 0.95 2.5

4.20–32.34 1.63 0.98 4.6
8.00–31.15 1.98 0.96 3.7
9.72–35.15 2.34 0.95 3.2

0.727–2.484 0.045 1.00 13.4
0.550–2.232 0.073 0.99 6.2
0.884–2.555 0.100 0.99 5.1

protein based group (bean based); carbohydrate based group (flour or rice

determination (r2); ratio of the standard deviation of the AOAC values to
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5. Conclusions

Major components and energy were predicted by NIR
spectroscopy in validation samples of homogenized com-
mercially available dinners within the accuracy required
for screening samples and, in some cases, within the accu-
racy required for quality control or process control. These
products with high moisture, a wide range in moisture and
extremely diverse ingredients, can be screened simulta-
neously for constituents and energy in less than 15 min
for each sample in contrast to the conventional methods
of analysis which take at least 24 h.
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